
AN ALGORITHM FOR AUDIO SKEW COMPENSATION IN LOW
LATENCY ENVIRONMENTS

Stefan Werner
stefan@keindesign.de

ABSTRACT

Applications using distributed audio face the problem of
different clocks in the sender’s and receiver’s hardware.
We implemented an approach to eliminate the symptoms
of clock skew designed for low-latency applications in
high-speed local networks by applying freedback controlled
resampling to the signal.

1. INTRODUCTION

Low-latency high-speed networks such as Gigabit Ether-
net have become common over the last few years and are
attractive for handling real-time media such as audio and
video for interactive applications.

The fact that the audio hardware of the computers in
a distributed application are not synchronized creates the
problem of clock skew: A sender may send more sample
data than the receiver will process in that time, eventually
resulting in buffer over- or underflows and artifacts in the
audio signal.

For our AudioSpace project at RWTH Aachen1 , we
were looking for a stable solution that would be suitable
for interactive musical applications, which requires an over-
all latency of less than approximately 20ms. The Au-
dioSpace was intended to be the audio equivalent of a
shared network printer, so that several computers in a local
network (clients) could play back audio through a multi-
channel speaker system connected to a central server as if
the speakers were connected to the clients directly.

2. RELATED WORK

The general problems of clock synchronization in distributed
applications has been covered extensively many previous
publications like [1] or [2], which is why we will not cover
this here in detail.

Many suggested solutions for the problem of clock skew
compensation in audio applications, rely on time-stamped
network packets. Each audio packet gets a sending time-
stampsi in the sender’s local time and the receiver takes
time-stampsai on every packet’s arrival. A comparison
of both local and remote time-stamps to the correspond-
ing previous time-stampssi−1 andai−1 is being used to

1 http://media.informatik.rwth-aachen.de/asp.html

calculate an estimate of the clock deviation [3]2 :

ei =
ai − ai−1

si − si−1
(1)

Since network latencies and operating system schedulers
add jitter, the estimate is usually being smoothed by a fil-
tering function. Akester and Hailes calculated the mean
averagêe to estimate the clock skew when streaming sam-
pled audio over a local network[3]. Fober, Letz and Or-
larey prestented the Exponential Peak Tolerant Midpoint
Average algorithm (EPTMA) to estimate and compensate
skew over high latency networks which they have used to
transfer MIDI signals over the internet.[5]. The EPTMA
was designed to tolerate occasional peaks in packet delay
which are common in internet transfer. Fober also pub-
lished results to demonstrate how the EPTMA can also be
used to stream sampled audio over local networks.

The resulting filtered value gives an estimation of the
clock skew, indicating the difference in sample rate be-
tween the sender and the receiver. Based on this estimated
clock skew, the receiver has to insert or remove frames to
avoid a buffer under- or overflow. The number of frames
that needs to be inserted or removed per second depends
on the sample rate:

n = samplerate ∗ (1− êi) (2)

To compensate the estimated clock skew, Fober sim-
ply dropped or repeated single frames. However, Hodson,
Perkins and Hardman pointed out that inserting or remov-
ing single frames at regular or irregular intervals creates
audible artifacts attributable to phase discontinuity[4]. In-
stead, they were scanning the buffer for similar passages
which then were duplicated or dropped without strong dis-
continuities. This algorithm required buffers that are large
enough to ensure that such stationary fragments can be
found in the buffer. The authors used a buffer of 200ms for
their implementation that according to their paper worked
well for compensating large clock skews in streams of
voice recordings or pop music, but had audible artifacts
with classical music.

Akester and Hailes used sampling rate conversion to
compensate clock skew: The estimated clock skew was
used as the conversion rate for a sample rate converter that
got its input from the stream buffer and sent its output to
the audio hardware. Given the case that calculated clock

2 The formulas are derived from the C source code in the original
source.



skew equals the real clock skew, the sample rate converter
would prevent buffer over- and underflows and the num-
ber of frames the sample rate converter reads from the
buffer would be equal to the number of frames that were
received over the network. As long as the sample rate
variations were low enough, the change in pitch produced
by the sample rate conversion would not be audible, and
with a sample rate converter that is using a good enough
algorithm, no audible aliasing would be present.

These approaches are based on the assumption that the
estimated clock skew will eventually converge precisely
to the real clock skew. Since neither the time-stamps that
go into the equations nor the the math unit of the comput-
ers processor are limited in their precision, the estimated
clock skew may be slightly off the real clock skew, caus-
ing the sample rate converter to be slightly off the actual
value. The magnitude of the imprecision will be insignif-
icant in most situations, but since the difference between
estimated and real clock skew adds up over time one can-
not rule out that a buffer under- or overflow may even-
tually happen in a long signal. They also suffer from a
lack of feedback: the estimated clock skew is the only in-
put variable of the process, and any variations or errors
of that will directly affect the result. The proposed meth-
ods do their best to compensate the cause of buffer over-
or underflow, but are unable to detect if it does actually
prevent the symptoms. A more effective method of pre-
venting drop-outs is thus to instead monitor the playback
buffer queue length on the receiving side and make sure
that it stays in a safe range.

As a part of their comprehensive synchronization pro-
tocol, Rothermel and Helbig prevent buffer over- and un-
derflow by defining an upper and a lower water mark for
the filtered buffer queue length[9]. In case the buffer queue
length reaches a water mark, their stream synchronization
takes emergency measures on the receiving side. In ad-
dition, they define two ”target boundaries”, which when
crossed, cause the receiver to adjust its playback rate and
to notify the sender. The sender will then enter an adapta-
tion phase in order to get the buffer back to a safe length.

3. OUR METHOD

3.1. Approach

While the clock skew is the initial source of the problem,
it is not directly the (usually inaudible) timing differences
that bothers us but the consequence, the eventual buffer
over- and underflows. If we can keep the buffer queue
length at a constant level without audible artifacts, the
problem is solved, without having to know the exact clock
skew.

Instead of trying to quantify the timing differences, we
chose to simply monitor the buffer queue length and change
the playback speed in a way that’d drive the queue length
towards a predefined length. If the queue is too short, the
playback must slow down to remove less samples from
the buffer than are received during the same time. If the
queue is too long, the playback must accelerate to take

more samples from the buffer than are received (figure
1). This can be achieved with a resampling component
between the buffer and the audio hardware, similar to Ak-
ster and Hailes’ method, resulting in minimal artifacts re-
gardless of the buffer size or the complexity of the sig-
nal. In experiments, it was found that simply switching
back and forth between two playback speeds, one below
the actual sample rate and one above the actual sample
rate, was sufficient to keep the buffer queue length in a
safe range. This can be seen as a simplified version of
Rothermel and Helbig’s water marks that uses just a sin-
gle control mark and has only two discrete states of which
none requires additional communication with the sender.
While momentarily, the playback speed would always be
wrong, in the long run the average speed would match
the actual clock skew. Crucial is the difference between
the two speed changes: a too small difference would not
compensate for much clock skew, where a too large one
results in audible pitch shifting.

In psycho-acoustics exists the notion of thejust notice-
able differenceor JND that describes how large a pitch
change can be until the human ear notices it.[8] The pre-
cise value depends on the volume and frequency of the
signal, but a rule of thumb says that changes of up to
0.25% are unnoticeable[7]3 Keeping the speed changes
below the JND would thus ensure that the skew compensa-
tion would not cause any noticeable pitch shifts in the re-
sulting signal. Experiments with the AudioSpace showed
that an abrupt change of 0.3% could still be noticed on
some signals like a sine tone. Reducing the difference to
0.1% made that effect disappear.

In our experience, the clock skew between machines is
below 0.1%, which is also what Fober observed[6]. For
our skew compensation, this means that as long as the
skew is below that value, we can reliably compensate the
skew over infinite periods of time. Skew that should ex-
ceed this will not be compensated properly and will lead
to artifacts.

Since our target environment is a GBit Ethernet LAN,
we are in the lucky situation that filters like the EPTMA
are not necessary as the network has a much lower jit-
ter than networks with multiple routers and more complex
paths like the internet. Since our algorithm does its com-
pensation measures only within the range defined by the
JND, occasional spikes in the network will also not affect
the resulting signal.

3.2. Implementation

We implemented this algorithm as part of our AudioSpace
shared audio device. The implementation runs on Mac OS
X 10.3 and is using CoreAudio’s Varispeed AudioUnit for
resampling. Apple describes the VariSpeed’s algorithm as
”high-quality”, but does not disclose further details about
the algorithm used.

3 Usually, the JND is quoted as 4-5 cents[7]. Cents are a unit used
in music and psycho-acoustics where 100 cents equal one semitone or
f2
f1

= 2
cents
1200 .



occupation >
50%?

average buffer
occupation over

50 cycles

set sample rate
conversion to too

fast

set sample rate
conversion to too

slow

Yes

No

Figure 1. Skew compensation algorithm

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000

No compensation
With compensation

time

bu
ffe

r q
ue

ue
 le

ng
th

 in
 b

yt
es

Figure 2. Buffer queue lengths with and without skew
compensation

Using a receiver buffer size of 384 samples to compen-
sate jitter and using a packet size of 128 samples on the
sender, the system has a total latency of 12.5 ms at a sam-
ple rate of 48kHz.

3.3. Performance

We tested the system’s performance by monitoring the
buffer queue length. We ran one test with our compen-
sation algorithm and one without our algorithm. Figure
2 shows an excerpt from the results. One can clearly see
how without the skew compensation, the buffer queue length
was steadily increasing, causing buffer overflows and dropped
samples at regular intervals. Running the the test with our
compensation kept the buffer queue length at a steady size.
The spikes in the graphs were caused by jitter from the
network or operating system scheduler. One can see that
our compensation was not irritated by the spikes.

In a long-term test, we implemented a function that
would raise an alert whenever a buffer over- or underflow

would occur. Playing a signal with a duration of several
hours did not show a single alert.

The CPU load on the receiver’s side is fairly high: An
iBook G3 800MHz was capable of handling not more than
six channels at 48kHz. More than six channels or running
other applications at the same time would cause drop-outs
in the signal. A PowerMac G5 2x2GHz was reliable to up
to 24 channels. The second CPU in the PowerMac gave
it enough headroom to handle additional applications si-
multaneously. Profiling our code showed that the majority
of time is spent in the VariSpeed audio unit.

As part of the AudioSpace system, this algorithm has
been in use for over a year now in the Aachen Media
Space4 with various PowerMac, PowerBook and iBook
computers. There have been no user reports about high
latency, drop-outs or stuttering artifacts, even when other
high-bandwidth transfers happened on the same network
(like file transfers). A few experiments showed that it was
also possible to use it over a wireless 802.11g network as
long as there was not too much competing wireless net-
work traffic.

3.4. Future work

An alternative algorithm that can be imagined would not
switch between two different sampling rates but chose a
resampling rate by the buffer queue length. Smoother
transitions between different sampling rates should pre-
vent audible artifacts.

Our implementation’s CPU overhead could be improved
by using a less complex sample rate conversion. As the
Varispeed Audio Unit does not have any quality control
parameters, we would need to implement our own resam-
pling. Multithreading our code would also be an enhance-
ment to take advantage of the dual processors in our Pow-
erMac workstations: Each audio channel could run in its
own thread. However, that may require additional buffers
through which the threads then communicate, possibly in-
troducing more latency.

4. CONCLUSION

We have introduced and implemented a simple method for
skew compensation for audio streaming in networks that is
stable in low-latency environments. It guarantees to com-
pensate any clock skew over infinite periods as long as the
absolute clock skew is less than 0.05%.

5. ACKNOWLEDGMENTS

Thanks go to Jan Borchers of RWTH Aachen and Walter
Kriha of HdM Stuttgart for their support during the de-
sign and implementation phase of the AudioSpace and to
the whole Media Computing Group at RWTH Aachen for
their continued testing and feedback.

4 http://media.informatik.rwth-aachen.de/msp.html



6. REFERENCES

[1] Klaus Schossmaier,An Interval-based Frame-
work for Clock Rate Synchronization

[2] Rafail Ostrovsky, Boas Patt-ShamirOptimal
and Efficient Clock Synchronization Under
Drifting Clocks

[3] Akester, HailesA new audio skew detection
and correction algorithm, ICME2002.

[4] Orion Hodson, Colin Perkins and Vicky Hard-
manSkew detection and compensation for In-
ternet audio applications, Proceedings of the
IEEE ICME, New York, NY, USA, July 2000.

[5] Dominique Fober, Stéphane Letz, Yann Or-
larey Clock Skew Compensation over a High
Latency Network, Proceedings of the ICMC
2002

[6] Dominique FoberAudio Cards Clock Skew
Compensation over a Local Network. Grame
Technical Report - 02-04-01, 2002.

[7] Pickles, J. O.An Introduction to the Physiol-
ogy of Hearing ,1982.

[8] Roads, C. The Computer Music Tutorial,
1996.

[9] Kurt Rothermel, Tobias HelbigAn Adaptive
Protocol for Synchronizing Media Streams,
1997


